为了在高移动性虚拟环境中实现柔软物体的高富度触觉渲染,我们提出了一种新颖的触觉显示dandeliontouch。一群无人机将触觉执行器传递给用户的指尖。 DandelionTouch的用户能够在不受设备工作区域限制的大空间中体验触觉反馈。重要的是,在与虚拟物体的长时间互动中,他们不会经历肌肉疲劳。手动跟踪和群控制算法允许用手动运动引导群,并避免在编队内部发生冲突。在这项研究中,研究了群体之间的阻抗连接的几种拓扑结构。该实验在实时在正方形轨迹上执行了一个遵循的实验,该实验表明,在恒星拓扑中连接的无人机执行了平均位置误差较低的轨迹(与其他阻抗拓扑相比,RMSE降低了20.6 \%与潜在的基于现场的群体控制相比,为40.9 \%。在所有具有阻抗行为的地层中,无人机的达到的速度比通过潜在场算法控制的群体高28%。此外,在与7名参与者的用户研究中评估了几种纤维骨架模式的感知。该研究表明,提议的时间延迟和频率调制的组合使用户可以同时成功识别VR中的表面特性和运动方向(平均识别率为70 \%,最大为93 \%)。 DandelionTouch建议在VR系统中提出一种新型的触觉反馈,无需手持或可穿戴界面。
translated by 谷歌翻译
建模是什么使广告有说服力的原因,即引起消费者的所需响应,对于宣传,社会心理学和营销的研究至关重要。尽管其重要性,但计算机视觉中说服力的计算建模仍处于起步阶段,这主要是由于缺乏可以提供与ADS相关的说服力标签的基准数据集。由社会心理学和市场营销中的说服文学的激励,我们引入了广泛的说服策略词汇,并建立了用说服策略注释的第一个AD图像语料库。然后,我们通过多模式学习制定说服策略预测的任务,在该任务中,我们设计了一个多任务注意融合模型,该模型可以利用其他广告理解的任务来预测说服策略。此外,我们对30家财富500家公司的1600个广告活动进行了真实的案例研究,我们使用模型的预测来分析哪些策略与不同的人口统计学(年龄和性别)一起使用。该数据集还提供图像分割掩码,该蒙版在测试拆分上标记了相应的AD图像中的说服力策略。我们公开发布代码和数据集https://midas-research.github.io/persuasion-avertisements/。
translated by 谷歌翻译
移动机器人和无人机的异构团队在对环境的自主探索方面提供了可观的好处。然而,尽管广泛讨论了此类系统的联合勘探方案,但它们仍未对无人机对接过程中外部条件变化和群体断层的适应性低。当一个代理商失去其位置信号时,我们提出了一种基于视觉的无人机群对接系统,以在移动平台上稳健地着陆。拟议的蜂鹰系统依靠基于视觉的检测来进行移动平台跟踪和导航其代理。群的每架无人机都带有RGB摄像头和APRILTAG3 QR代码标记。 Swarmhawk可以在两种操作模式之间切换,在全球无人机本地化的情况下充当均匀的群,或者在一个无人机或全球本地化故障中出现相机故障的情况下,将领导者的无人机指向其邻居。进行了两项实验,以通过静态和移动平台在全球和本地定位下评估Swarmhawk的性能。实验结果表明,静态移动平台上的群体着陆任务具有足够的准确性(均匀地层的4.2 cm误差为4.2厘米,领导者 - 追随者形成中的1.9厘米)和移动平台(同质地层中的6.9厘米和4.7 cm的误差为6.9 cm,在4.7 cm中的误差领导者追随者组)。此外,无人机在领导者追随者组中沿着复杂的轨迹(平均误差为19.4 cm)移动的平台上显示出良好的降落。拟议的蜂鹰技术可以潜在地应用于各种群情景中,包括复杂的环境勘探,检查和无人机交付。
translated by 谷歌翻译
该论文着重于无人机的异质群,以实现移动机器人上层的动态着陆。科学家尚未实现这项具有挑战性的任务。关键技术是,我们没有用计算机视觉来促进无人机群的每个代理,这大大增加了有效载荷并缩短飞行时间,而是建议在领导者无人机上仅安装一台摄像头。追随者无人机从无人机中接收命令,并保持无冲突的轨迹。实验结果表明,群体降落在静态移动平台上(4.48厘米的RMSE)上很高。 RMSE群落在移动平台上的降落,最大速度为1.0 m/s和1.5 m/s,分别为8.76厘米和8.98厘米。拟议的蜂群技术将允许蜂群的省时降落,以进一步充电。这将使可以在救援操作,检查和维护,自主仓库库存,货物交付等方面实现多代理机器人系统的自我维护操作。
translated by 谷歌翻译
这篇研究论文提出了COVID-19监测和响应系统,以确定医院患者的数量激增以及关键设备(如东南亚国家的呼吸机),以了解医疗机构的负担。这可以通过资源计划措施来帮助这些地区的当局,以将资源重定向到模型确定的地区。由于缺乏有关医院患者涌入的公开可用数据,或者这些国家可能面临的设备,ICU单元或医院病床的短缺,我们利用Twitter数据来收集此信息。该方法为印度的各州提供了准确的结果,我们正在努力验证其余国家的模型,以便它可以作为当局监控医院负担的可靠工具。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
The rise in data has led to the need for dimension reduction techniques, especially in the area of non-scalar variables, including time series, natural language processing, and computer vision. In this paper, we specifically investigate dimension reduction for time series through functional data analysis. Current methods for dimension reduction in functional data are functional principal component analysis and functional autoencoders, which are limited to linear mappings or scalar representations for the time series, which is inefficient. In real data applications, the nature of the data is much more complex. We propose a non-linear function-on-function approach, which consists of a functional encoder and a functional decoder, that uses continuous hidden layers consisting of continuous neurons to learn the structure inherent in functional data, which addresses the aforementioned concerns in the existing approaches. Our approach gives a low dimension latent representation by reducing the number of functional features as well as the timepoints at which the functions are observed. The effectiveness of the proposed model is demonstrated through multiple simulations and real data examples.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
The ability for an agent to continuously learn new skills without catastrophically forgetting existing knowledge is of critical importance for the development of generally intelligent agents. Most methods devised to address this problem depend heavily on well-defined task boundaries, and thus depend on human supervision. Our task-agnostic method, Self-Activating Neural Ensembles (SANE), uses a modular architecture designed to avoid catastrophic forgetting without making any such assumptions. At the beginning of each trajectory, a module in the SANE ensemble is activated to determine the agent's next policy. During training, new modules are created as needed and only activated modules are updated to ensure that unused modules remain unchanged. This system enables our method to retain and leverage old skills, while growing and learning new ones. We demonstrate our approach on visually rich procedurally generated environments.
translated by 谷歌翻译